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Abstract

The rheological behaviour of dilute and semidilute solutions of poly(2-hydroxyethyl methacrylamide) in glycerine is described, empha-
sising the study of the variation of both the zero shear rate viscosity, 1, and the steady-state compliance function, J2, with concentration.
Shear rate fields, above a critical value, may promote molecular tight ‘structures’ that enhance the viscosity of the semidilute solutions and, as
a result, these systems exhibit shear-thickening behaviour. However, the dilute solutions display shear-thinning behaviour and obey the Cox—
Merz rule. The flow transients appearing after either application of a constant shear rate or cessation of flow were studied for semidilute
solutions. The shear-thickening behaviour of these solutions is interpreted in terms of the formation of hydrogen bonds between the
acrylamide groups and the carbonyl groups of different chains. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The viscoelasticity of polymer melts and solutions plays
an important role in the transient and complex flows
encountered in a variety of flow processes. The flow
behaviour of polymer melts depends on the chain size,
molecular weight distribution, chain flexibility, and shear
rate. The rheology of polymer solutions also depends on
concentration, and polymer—solvent interactions may play
an important role in the flow behaviour of both dilute and
very dilute solutions.

In general, the phenomenological theory of visco-
elasticity suggests some correlations between the functions
that characterise the steady-state condition of a shearing
flow, and the functions describing the dynamic properties
of the system in the linear viscoelastic regime [1-5]. Speci-
fically, the viscosity obtained from a simple shear
flow process (n = o/y, where o and 7y are, respectively,
the shear stress and the shear rate) is compared with the
dynamic viscosity ' (= G"(w)/w, where G” (w) is the
loss relaxation modulus at the frequency w) [1], whereas
the first normal stress difference coefficient N{{ = (o;; —
0'22)/272} is related to the coefficient A = G'(w)/w’. On
the other hand, N;(y) and G'(w) are related with the elasti-
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city of the material, i.e. its ability to store the work of
external forces.

Both the storage and loss relaxation moduli show a rather
complicated dependence on frequency dictated by the salient
features of the relaxation spectrum of the system and, in
principle, no correlation between n'(w) and 1(7y) should
be expected to exist with the exception of the limiting point

.y . G'(w) *
Mo = lim 7' (w) = lim = | 7H(7)dr, (D
0—0 0—0 0] 0

where 7 and H(7) are, respectively, the relaxation time and
the relaxation spectrum. However, if we consider that the
external effect alters the relaxation spectrum of the system
during flow, Eq. (1) can be generalised to describe the
dependence of the viscosity on the shear rate by means of
the following expression [6]:

n(3) = JO TH(r, P)dr, @)

where H(T, ) is the altered relaxation spectrum that returns
to the spectrum corresponding to the undeformed state at
v — 0. Based on this reasoning, several relationships
between o(y) (or oy — o) and G"(w) (or G'(w)) have
been established [7]. Among these, of great interest is the
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Fig. 1. Structural unit of poly(2-hydroxyethyl methacrylamide).

Cox—Merz [8] empirical method

) =@ aty— o, A3)

where |7 (0)| = (1/a(G"” + G")!" is the absolute value of
the complex viscosity.

The kinetic aspects of the polymerisation of methacrylate
polymers of hydrophilic character have recently been
studied in our laboratories, specifically, poly(2-hydro-
xyethyl methacrylamide) (PHMCA), and the suitability of
this material for the preparation of soft contact lenses is
currently being tested. A schematic representation of the
repeating unit of this polymer is shown in Fig. 1. In this
work, we have studied the rheological behaviour of dilute
and semidilute solutions of PHMCA in glycerine, a solvent
of low volatility. Thus, the variations of both the zero shear
rate viscosity and the steady-state compliance function with
the concentration of the solutions were determined. The
non-Newtonian character of these solutions was studied
using steady flow experiments, and the results compared
with those predicted by the Cox—Merz relationship.

2. Experimental part

2.1. Synthesis and characterisation of poly(2-hydroxyethyl
methacrylamide)

The monomer, 2-hydroxyethyl methacrylamide, was
prepared by adding dropwise a solution of methacyloyl
chloride in ethyl ether to 2-aminoethanol dissolved in an
aqueous sodium hydroxide solution. The reaction was
carried out at 0°C under nitrogen atmosphere. The monomer
was purified by means of several extractions with dichloro-
methane, obtaining a product with purity higher than 99%,
as determined by high performance liquid chromatography
(HPLC) and gas chromatography.

Poly(2-hydroxyethyl methacrylamide) was obtained by
radical polymerisation of 2-hydroxyethyl methacrylamide
in a mixture of water—dioxane (50/50), at 60°C, using
AIBN as initiator. The reaction was carried out in vacuum,
and stopped when a conversion of about 10% was reached.
The polymer was isolated from the reaction medium by

several precipitations in n-hexane and, finally, purified by
freeze drying from dioxane—water. The number-average
molecular weight of the polymer was 50,000, the dispersion
index was roughly 2, and its glass transition temperature,
120°C.

2.1.1. Preparation of polymer—glycerine solutions

A relatively dilute aqueous solution (I) of poly(2-hydro-
xyethyl methacrylamide) was prepared by dispersing the
polymer in water at 60°C under slow mixing conditions.
The amount of glycerine required to prepare a solution of
about 20% of the polymer in this solvent was added to
solution I. Then, the water was removed from the poly-
mer/water—glycerine solution by evaporation at reduced
pressure. The concentration of polymer in glycerine was
adjusted to the concentrations of interest by adding the
required amount of solvent to the primitive solution. The solu-
tion was further homogenised under slow stirring conditions.

2.1.2. Steady flow and oscillatory measurements

Both the oscillatory and steady flow of five solutions of
weight fractions 0.027, 0.0533, 0.0818, 0.135 and 0.174
were measured. The measurements were carried out with
an R-19 Weissenberg rheogoniometer, at room temperature,
using cone—plate geometry. For the solutions of lower vis-
cosity (o<1 Ns m 2), a cone of 2°, and a plate 50 mm of
diameter were used, whereas the angle and the radius were
1° and 25 mm, respectively, for the measurements carried
out on the solutions of higher viscosity (o> 10 Ns m?).
In the oscillatory measurements, the driving amplitude was
less than 1.0 X 1073, thus ensuring linear regime in the
experiments.

Angular displacements were measured with two NA1/
2.5 mm linear variable differential transducers (LVDT)
connected to a C56R transducer meter, both from Sangamo.
The unfiltered output voltages from the transducers were
analysed and stored with a four-channel Nicolett System
420 digital oscilloscope. This instrument digitalises the
input signals from the cone and plate by means of 12-bit
A/D converters. The angular resolution was =5 X 10~ rad.

In the oscillatory measurements, the digital signals were
stored and later processed. The curves obtained were fitted
to the functions

Xl = XOI Sin(211'wt + ¢01) +A1,
X2 = X()] Sin(211'wt + ¢02) + Az, (4)

where Xy, Xq2, do1, ¢, A1 and A, represent, respectively,
amplitudes (X), phase angles (¢) and permanent shifts (A)
(of the steady component of the signal) of the cone and plate
signals, respectively. The ratio of amplitudes b ( = Xy/X,)
was determined with an error lower than 3%. However, the
error for the phase lag Ap (= ¢y — ¢Pp) was 5-15% for
values of this parameter lying in the vicinity of those corre-
sponding to the difference between the driving frequency
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and the natural frequency of the instrument. The natural
frequencies for the first and second configurations were
75+ 13 and 340 = 1rad s ', respectively.

3. Results and discussion
3.1. Flow behaviour from dynamic experiments

The rheological behaviour of the solutions was studied in
the low frequency region, or terminal region, where flow
dominates. The real (G'(w)) and loss (G”(w)) components
of the complex relaxation modulus (G”(w)) of the solutions
are plotted, in the frequency domain, in Figs. 2 and 3,
respectively. The curves are similar to those displayed by
rheological simple systems. Thus, the double logarithmic
plots G’ (w) against w are straight lines of slope 2 in the
limit w — 0, in agreement with the prediction of the
phenomenological theory of linear viscoelasticity. Similar
plots for G”(w) also agree with the predictions of the theory
since in the limit w — O, the curves are straight lines of
slope 1. As expected, the curves are shifted to lower
frequencies as the concentration increases.

Values of the viscosity at zero shear rate obtained by
means of Eq. (1) from Fig. 2 are shown in the third column
of Table 1. It can be seen that for dilute solutions, the vis-
cosity only increases moderately with concentration,
presumably as a consequence of the fact that the polymer
chains in the solutions are slightly entangled. The rather
sharp increase in viscosity with concentration for semidilute
solutions is apparently a consequence of the increase in the
density of entanglements in the solutions.

An important viscoelastic function that accounts for the
maximum recoverable deformation is the steady-state
compliance, J°. According to the phenomenological theory
of linear viscoelasticity [9],
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Fig. 2. Frequency dependence of the storage relaxation modulus, at 25° C,
for different concentrations: (1) w=0.174, (2) w =0.135, (3) w = 0.0818,
(4) w=0.0533 and (5) w = 0.0227.
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Fig. 3. Variation of the loss relaxation modulus with the angular frequency,
at 25° C, for different concentrations: (1) w=0.174, (2) w=0.135,
(3) w=10.0818, (4) w=0.0533 and (5) w = 0.0227.

where (7) is the mean-relaxation time of the solutions.
Values of the steady-state compliance of these systems are
shown in the third and fourth columns of Table 1. It can be
seen that the values of JS are rather insensitive to the
concentration of polymer in the range of concentrations
studied.

Curves showing the frequency dependence of the modu-
lus of the complex viscosity of the solutions are plotted in
Fig. 4. By normalising the values of |n”|, the resulting
curves superpose rather well giving a unique curve,
independent of the concentration (see Fig. 5) if the results
are plotted against the reduced frequency w,= w{7). By
assuming that Eq. (3) holds, the master curve also would
give the variation of the normalised viscosity with the
shear rate in a steady flow experiment. The curve represent-
ing the variation of the viscosity with the reduced frequency
presents a plateau, in which the viscosity hardly varies with
the shear rate, followed by another zone (non-Newtonian
region) in which the viscosity strongly decreases as the
shear rate increases.
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Fig. 4. Absolute values of the complex viscosity, in the frequency domain,
for different concentrations: (1) w=0.174, (2) w =0.135, (3) w = 0.0818,
(4) w=10.0533 and (5) w = 0.0227.
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Table 1

Characteristic rheological parameters of the solutions

Weight fraction No(dyn s cm 2, No(dyn s cm 2, 10 x 2 10*x (1) Ve

of polymer, w steady test) oscillatory test) (cm? dyn™h) (s) sh
0 7.64 = 0.07

0.0227 82=*04 7.8 £0.6 1.5+0.7 1.23 813
0.0533 18£1 16.6 = 0.6 26+02 4.68 210
0.0818 60 =3 58+3 2+1 12 83
0.135 1200 = 100 1100 = 300 23+03 276 3.6
0.174 3700 =+ 300 3300 =+ 300 29+09 1070 0.93

3.2. Flow behaviour from steady experiments

With the aim of investigating the reliability of the depen-
dence of the viscosity on the shear rate predicted by the
Cox—Merz approach, steady flow experiments were con-
ducted on the solutions, from which the variation of the
viscosity with the shear rate was obtained. The pertinent
results are shown in Fig. 6. All the curves exhibit a plateau
whose length increases as the concentration decreases. The
values of the zero-shear rate viscosity obtained for the solu-
tions from steady experiments are shown in the second
column of Table 1. It can be seen that these values are in
rather good agreement with those obtained from oscillatory
experiments by means of Eq. (1). The two solutions with
w=0.174 and w=0.135 display shear-thickening beha-
viour for y>1 s~ and v >4 s_l, respectively, but the
solutions with w = 0.0085 apparently exhibit shear-thinning
behaviour at higher shear rates.

Semidilute and dilute polymer solutions are entangled
systems, and the density of entanglements increases as the
molecular weight and the concentration increases. Below a
certain critical concentration, molecular chains do not over-
lap their domains, and whenever the flow remains in the
laminar regime, the solutions exhibit Newtonian behaviour
at any shear rate. As long as (7) is larger than the reciprocal
of the shear rate, the systems display Newtonian behaviour.
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Fig. 5. Master curve for the reduced modulus of the complex viscosity

plotted against the reduced frequency: (1) w=0.174, (2) w=0.135,
(3) w=0.0818, (4) w=0.0533 and (5) w = 0.0227.

Therefore, it seems that a critical shear rate, y,, exists above
which the flow behaviour of polymers is no longer Newtonian.
The value of this quantity can roughly be estimated by
means of the approximation [10]

JeYe = 1. (©6)

Values of the mean-relaxation time and the critical shear
rate for the solutions are shown, respectively, in the fifth and
sixth columns of Table 1. An inspection of the curves shown
in Fig. 6 indicates that departure of the two more con-
centrated solutions (w =0.174 and 0.135) from Newtonian
behaviour occurs at shear rates of roughly 1 and 45",
respectively, in agreement with the predictions of Eq. (6),
0.93 and 3.6 s, respectively. The predictions concerning
the critical shear rate of the other solutions that display
shear-thinning behaviour seem to be in fair agreement
with the experimental results.

The curves depicting the dependence of the viscosity on
the shear rate obtained from steady flow experiments and
from dynamic experiments are rather similar in the case of
the shear-thinning solutions. However, the Cox—Merz
approximation is not suitable to describe the steady flow
behaviour of shear-thickening solutions.

The time necessary to obtain steady-state conditions in
the flow of the shear-thickening solutions was investigated by
recording the transitory appearing after sudden application
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Fig. 6. Shear-rate dependence of the steady-shear viscosity for different con-
centrations: (1) w=10.174, (2) w=0.135, 3) w=0.0818, (4) w=0.0533,
(5) w=0.0227 and (6) glycerine.



S.R. Kosvintsev et al. / Polymer 42 (2001) 7395-7401 7399

o -1
o -2

Ooo
0.0 4 OOOOOOnnnnnn o

t, s

Fig. 7. Transitories after application (1) a shear rate of 1.10s™' to the
w = 0.135 solution and then suddenly cancelling the shear rate (2) after
steady flow conditions are reached; ¢/ is the normalised angular displa-
cement, where ¢ is the steady displacement. The solid lines are fitting
results by the single exponential Eq. (7). For the two transitories,
7= 1.84s. In both cases, the mean square errors of approximation are
less than 0.02%.

of a given shear rate to a well-rested solution. The transient
appearing after the sudden cancellation of the steady flow
(y = 0) was also recorded. These transients for the solution
w=0.135, at the shear rate 1.10s~' (<7,), are shown in
Fig. 7. It can be seen that after the application of the shear
rate indicated, steady-state conditions are reached in less
than 2 s. The transients expressed in terms of the angular
displacement, ¢, are characterised by single exponent
functions

@ = @yu(l — exp(—t/1)) and ¢ = @y exp(—t/7), (7

where the value of the relaxation time, 7, is common for the
two expressions.

In the shear-thickening region, the transients are defined
by two exponent expressions (see Fig. 8)

@(t) = @u(1 — exp(—t/T) — exp(—1/7)) and
(8
(1) = y(exp(—t/T + exp(—t/7,))

This behaviour suggests that in the formation of a struc-
ture compatible with y in the shear-thickening area, two
interacting mechanisms of relaxation times 7; and 7, inter-
vene. The variation of the smaller relaxation time, 7, with
the shear rate is presented in Fig. 9, where, for comparative
purposes, the shear-rate dependence of the normalised visc-
osity is also shown. It can be seen that 7, like the viscosity,
remains nearly constant until a critical shear rate is reached
after which 7, decreases whereas the viscosity increases.
The evolution of 7, is not so definite. Thus, in the shear-
thickening region, the value of 7, increases with the shear
rate and then decreases.

The variation of the viscosity of well-rested semidilute
solutions with time, following the application of a finite
shear rate greater than v, is illustrated in Fig. 10. Although

25 50

t, s

Fig. 8. Transitory, expressed in terms of the normalised angular displace-
ment, /@y, after the sudden application of a shear rate of 7.12 s to the
w = 0.135 solution. The dashed line (2) corresponds to the fitting by a
single exponent ¢/¢, = 1 — exp(—1/3.67) with the error 0.4%. The solid
line is the result of two exponents fitting ¢/, = 1 — 0.52 exp(—1/7.96) —
0.53 exp(—1/0.39) with error 0.01%.
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Fig. 9. Dependence of the exponent 7, on vy after application of shear
stresses to a well-rested w = 0.135 solution. The variation of the viscosity
with the shear rate is also shown.
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Fig. 10. Evolution of the viscosity with time for the w = 0.135 solution after

application of the shear rate 7.12s7".
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the viscosity of the system sharply increases at short times,
reaching a steady plateau may take 25 or more seconds. It is
important to note that the shape of the curve could depend
on the flow geometry [11]. A universal feature of most
shear-thickening systems is the relatively large fluctuations
undergone by the viscosity in the vicinity of the critical
shear rate. These fluctuations, which are rather large in
low-concentration micellar solutions, are relatively small
in the solutions used in this study [12].

A still unsolved issue in fluid dynamics is the elucidation
of the origin of shear-thickening behaviour. The literature
shows that this behaviour is not restricted to any particle
size range and has been reported for systems having particle
sizes below 1 w up to 500-700 p as well as for some poly-
mer solutions [13]. Very low concentration solutions of
wormlike micelles also exhibit a marked shear-thickening
behaviour [14]. In the last years, a great deal of theoretical
work has been developed related with shear-induced phase
transitions and mechanical instability in complex fluids
[15,16]. Careful experiments carried out on solutions of
wormlike micelles in which rheological and visualisation
techniques have been combined, indicate that these systems
exhibit inhomogeneous flow and structure formation.
However, it is not possible to conclude whether the changes
observed should be regarded as a kind of shear-induced
phase transition or merely as a mechanical instability.

Hydrogen bonding between carbonyl and amide groups
(=NH---O=C-) stabilises the « helix in poly(a-amino
acids) and proteins [17]. Solutions of poly(y-benzil-L-
glutamate) in cresol exhibit a usual high viscosity caused
by the existence of small helices along the chains stabilised
by —NH:--O=C- bonds [18]. In dichloroactic acid solutions,
the helices are destroyed, and the viscosity undergoes a
sharp decrease. In this later solvent, poly(y-benzil-L-gluta-
mate) behaves as a flexible coil [18]. In the case of the
semidilute solutions studied in this work, shear rates
above a critical value presumably promote the development
of molecular structures through —NH---O=C- bonds that
enhance the viscosity of the solutions. As a result, correla-
tion between dynamic and steady flows only can be estab-
lished for polymer systems, whose chemical structures do
not favour the formation of molecular associations. It is
worth noting that the flow behaviour of the solutions
described in this work differ from that exhibited by dilute
solutions of high molecular weight fractions of poly-
oxyethylene in mixtures of glycerine:water (50:50) [19].
In spite of the fact that hydrogen bonding between the
solvent and the polymer may exist in these systems, high
shear rate fields do not promote the formation of molecular
associations that enhance the viscosity of the polyoxy-
ethylene solutions. Therefore, these solutions only present
shear-thinning behaviour and, as a result, the Cox—Merz
approximation fits rather well the results obtained from
direct steady experiments.

In general, macromolecular fluids of flexible backbone
can be crudely viewed as a mass of entangled chains, there-

fore having a ‘structure’. The entanglement degree (e.g. the
number of entanglements/chain) in polymer solutions
depends on molecular weight and concentration. The cross-
over between dilute solutions, where the coils are separated,
and more concentrated solutions, where the coils overlap, is
expected to occur at a concentration, ¢, comparable with
the concentration inside a single chain of N segments so
that, for a good solvent, ¢* ~ a3N_4/5, where @’ is the
volume of a segment of the chain [20]. In terms of the
polymer fraction, the threshold w*~ N~*° will occur at
roughly 107 % in the solutions used in this work. In view of
this and due to the relatively low molecular weight of the
poly(2-hydroxyethyl methacrylamide), one would expect
that the chains in these solutions, even the higher concen-
trated ones, would be loosely entangled. Therefore, the
structure that evidently displays the solutions must arise,
as indicated above, from hydrogen bonding between the
carbonyl and the amide groups. As the concentration
increases, overlapping between the molecular domains
also augments, and as a result, the looseness of the structure
decreases. The structure of the solutions is dynamic, and it is
characterised by the mean-relaxation times indicated in the
fifth column of Table 1. One would expect a linear relation-
ship between shear stress and shear rate (constant viscosity)
for the solutions, whose structure is not changing during
laminar flow conditions. This occurs when the experimental
time window, expressed in terms of the reciprocal of the
shear rate, is larger than the mean-relaxation time of the
structure of the solutions. The flow behaviour of the solu-
tions for shear rates at which (1/3‘/71) < {7) depends on
concentration. For semidilute solutions (w=0.135 and
0174), the experimental results suggest that shear rates
above a critical value promote the formation of more tight
structures. In this case, the response time of the molecules of
the structure is too large relative to the experimental time
window and, as a result, the viscosity increases with the
shear rate. The opposite seems to occur in the shear-thinning
solutions.

4. Conclusions

The dilute and semidilute solutions of poly(2-hydroxy-
ethyl methacrylamide) in glycerine display linear visco-
elastic behaviour at very low shear rates. The steady-state
compliance function J¢ is independent of the concentration
of polymer in the solution, but the zero shear rate viscosity,
M, is strongly dependent on concentration.

Semidilute and dilute solutions exhibit, respectively,
shear-thickening and shear-thinning behaviour. The non-
Newtonian behaviour of the semidilute solutions cannot
be obtained from dynamic (oscillatory) measurements.

To reach steady flow conditions in the non-Newtonian
region, the semidilute solutions need a relatively long time.
Therefore, these solutions exhibit rheopectic behaviour in
the non-Newtonian zone.
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Formation of tight structures in semidilute solutions
through hydrogen bonding between acrylamide and carbo-
nyl groups of different chains, at relatively high shear rate, is
presumably responsible for the shear-thickening behaviour
of the semidilute solutions.
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